Samuel J. Yang

Samuel J. Yang joined Google Research in 2016. Prior to that, he completed a Ph.D. in Electrical Engineering at Stanford University, where his research in the labs of Karl Deisseroth and Gordon Wetzstein focused on computational imaging and display, the co-design and optimization of optics hardware and data processing alogrithms. He was supported by a NSF Graduate Research Fellowship and a NDSEG Graduate Fellowship.

About

About

Before completing my Ph.D., I received a B.S. in Electrical Engineering from Caltech, studying engineering physics and optics in Changhuei Yang's lab, and a M.S. in Electrical Engineering from Stanford, studying machine learning, image processing and computer vision.

In 2015, at Google Research, I applied deep learning methods to images as a Software Engineering Intern.

In 2014, at Google [x], I worked with optical physicists to design and implement imaging instrumentation hardware as an intern.

In 2013, at Pelican Imaging, I explored computational photography applications as a research intern.

Contact: samuely (at) alumni (dot) stanford (dot) edu

News

June 2023: Added Venugopalan et al. 2023.

September 2022: Added Yang et al. 2022 at Interspeech 2022.

March 2022: Added Schiff et al. 2022.

January 2022: Added Cooke et al. 2021.

September 2021: Added Yang et al. 2021 and associated press release.

July 2021: See blog post on applying speech enhancement for cochlear implants.

July 2021: Added Wright & Yang 2021.

2020: Added Schiff et al., 2020 and Tabak et al., 2020.

2019: Added Yang et al., 2019 and Andalman et al., 2019.

2018: In Silico Labeling is out in Cell. Updated with blog post and 4 recent publications.

2016: I presented this work at Focus on Microscopy 2016. Added two computer vision/machine learning projects, real-time tail/eye tracking for zebrafish virtual reality and depth-assisted portrait perspective correction. Our multifiber recording paper is out in Nature Methods, with software released on GitHub.

2015: Our light sheet microscopy paper is out at Cell. My paper is out at Optics express. I presented this poster at SFN 2015. I also contributed to work in this poster. Our adaptive spectral projector was presented at SIGGRAPH Asia 2015.

Publications

    I am also on Google Scholar, ResearchGate and GitHub.

  1. Dementyev, A., Yang, S. J., Kavensky, D., Parvaix, M., Lai, C., Olwal, A. (2025). SpeechCompass: Enhancing Mobile Captioning with Diarization and Directional Guidance via Multi-Microphone Localization. CHI 2025. [ PDF ]
  2. Yang, S. J., Li, S., Venugopalan, S., Tshitoyan, V., Aykol, M., Merchant, A., Cubuk, E.D., Cheon, G. (2023). Accurate Prediction of Experimental Band Gaps from Large Language Model-Based Data Extraction. NeurIPS AI4Mat Workshop. [ link | PDF ]
  3. Venugopalan, S., Tobin, J., Yang, S. J., Seaver, K., Cave, J.N.R., Jiang, P.P., Zeghidour, N., Heywood, R., Green, J., Brenner, M.P. (2023). Speech Intelligibility Classifiers From 550K Disordered Speech Samples. ICASSP 2023. [ PDF ]
  4. Yang, S. J., Wisdom, S., Gnegy, Chet., Lyon, R.F., Savla, Sagar. (2022). Listening with Googlears: Low-Latency Neural Multiframe Beamforming and Equalization for Hearing Aids. Interspeech 2022. [ PDF | Clarity workshop 2021 version link ]
  5. Schiff, L.*, Migliori, B.*, Chen, Y.*, Carter, D.*, Bonilla, C., Hall, J., Fan, M., Tam, E., Ahadi, S., Fischbacher, B., Geraschenko, A., Hunter, C. J., Venugopalan, S., DesMarteau, S., Narayanaswamy, A., Jacob, S., Armstrong, Z., Ferrarotto, P., Williams, B., Buckley-Herd, G., Hazard, J., Goldberg, J., Coram, M., Otto, R., Baltz, E. A., Andres-Martin, L., Pritchard, O., Duren-Lubanski, A., Daigavane, A. Reggio, K., NYSCF Global Stem Cell Array Team, Nelson, P.C., Frumkin, M., Solomon, S.L., Bauer, L., Aiyar, R. S., Schwarzbach, E., Noggle, S. A., Monsma, Jr., F. J., Paull, D., Berndl, M.**, Yang, S. J.**, Johannesson, B.** (2022). Integrating deep learning and unbiased automated high-content screening to identify complex disease signatures in human fibroblasts. Nature Communications. [ press release | PDF | link | biorxiv ]
  6. Cooke, C.L., Kong, F., Chaware, A., Zhou, K.C., Kim, K., Xu, R., Ando, D.M., Yang, S. J., Konda, P.C., Horstmeyer, R. (2021). Physics-Enhanced Machine Learning for Virtual Fluorescence Microscopy. International Conference on Computer Vision ICCV2021. [ PDF | link ]
  7. Yang, L., Haber, J. A., Armstrong, Z., Yang, S. J., Kan, K., Zhou, L., Richter, M. H., Roat, C., Wagner, N., Coram, M., Berndl, M., Riley, P., Gregoire, J. M. (2021). Discovery of complex oxides via automated experiments and data science. PNAS. [ PDF | link | press release ]
  8. Wright, Carrie. Yang, S. J. (2021). Deep learning for automated focus quality detection in wafer inspection. SPIE Optical Metrology. [ link ]
  9. Tabak, G., Fan, M., Yang, S. J., Hoyer, S., & Davis, G.. (2020). Correcting nuisance variation using Wasserstein distance. PeerJ. [ PDF | link | old arXiv version ]
  10. Venugopalan, S.*, Narayanaswamy, A.*, Yang, S.*, Geraschenko, A., Lipnick, S., Makhortova, N. R., Hawrot, J., Marques, C., Pereira, J., Brenner, M., Rubin, L., Wainger, B., Berndl, M. (2019). It's easy to fool yourself: Case studies on identifying bias and confounding in bio-medical datasets. Neurips 2019 LMRL workshop, extended abstract. [ PDF | link ]
  11. Yang, S. J.*, Lipnick, S. L.*, Makhortova, N. R.*, Venugopalan, S.*, Fan, M.*, Armstrong, Z., Schlaeger, T. M., Deng, L., Chung, W. K., O'Callaghan, L., Geraschenko, A., Whye, D., Berndl, M., Hazard, J., Williams, B., Narayanaswamy, A., Ando, D. M., Nelson, P. & Rubin, L. L. (2019). Applying Deep Neural Network Analysis to High-Content Image-Based Assays. SLAS Discovery. [ PDF | link ]
  12. Andalman, A. S., Burns, V. M., Lovett-Barron, M., Broxton, M., Poole, B., Yang, S. J., Grosenick, L., Lerner, T. N., Chen, R., Benster, T., Mourrain, P., Levoy, M., Rajan, K. & Deisseroth, K. (2019). Neuronal dynamics regulating brain and behavioral state transitions. Cell. [ PDF | link ]
  13. Christiansen, E. M., Yang, S. J., Ando, D. M., Javaherian, A., Skibinski, G., Lipnick, S., Mount, S., O'Neil, A., Shah, K., Lee, A. K., Goyal, P., Fedus, W., Poplin, R., Esteva, A., Berndl, M., Rubin, L. L., Nelson, P., & Finkbeiner, S. (2018). In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images. Cell. [ PDF | link | blog post | in Wired | from NIH | from Gladstone ]
  14. Yang, S. J., Berndl, M., Ando, D. M., Barch, M., Narayanaswamy, A., Christiansen, E., Hoyer, S., Roat, C., Hung, J., Rueden, C. T., Shankar, A., Finkbeiner, S., & Nelson, P. (2018). Assessing microscope image focus quality with deep learning. BMC Bioinformatics, 19(1). [ PDF | link | blog post ]
  15. Allen, W.E., Kauvar, I.V., Chen, M.Z., Richman, E.B., Yang, S. J., Chan, K., Gradinaru, V., Deverman, B.E., Luo, L., & Deisseroth, K. (2017). Global Representations of Goal-Directed Behavior in Distinct Cell Types of Mouse Neocortex. Neuron, 94(4). [ PDF | link ]
  16. Grosenick, L.M., Broxton, M., Kim, C.K., Liston, C., Poole, B., Yang, S., Andalman, A.S., Scharff, E., Cohen, N., Yizhar, O., Ramakrishnan, C., Ganguli, S., Suppes, P., Levoy, M., & Deisseroth, K. (2017). Identification Of Cellular-Activity Dynamics Across Large Tissue Volumes In The Mammalian Brain. bioRxiv, 94(4). [ PDF | link ]
  17. Kim, C.*, Yang, S.*, Pichamoorthy, N., Young, N., Kauvar, I., Jennings, J., Lerner, T., Berndt, A., Lee, S.Y., Ramakrishnan, C., Davidson, T., Inoue, M., Bito, H., & Deisseroth, K. (2016). Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain. Nature Methods, 13(4). *co-first authors [ PDF | supplement | link | software ]
  18. Tomer, R., Lovett-Barron, M., Kauvar, I., Andalman, A., Burns, V.M., Sankaran, S., Grosenick, L., Broxton, M., Yang, S. & Deisseroth, K. (2015). SPED Light Sheet Microscopy: Fast Mapping of Biological System Structure and Function. Cell, 163(7), 0092-8674. [ PDF | link ]
  19. Yang, S., Allen, W., Kauvar, I., Andalman, A., Young, N., Kim, C., Marshel, J., Wetzstein, G., & Deisseroth, K. (2015). Extended field-of-view and increased-signal 3D holographic illumination with time-division multiplexing. Optics express, 23(25), 32573-32581. [ PDF | link ]
  20. Kauvar, I., Yang, S., Shi, L., McDowall, I., & Wetzstein, G. (2015). Adaptive Color Display via Perceptually-driven Factored Spectral Projection. ACM SIGGRAPH Asia (Transactions on Graphics). [ PDF | link ]
  21. Cohen, N., Yang, S., Andalman, A., Broxton, M., Grosenick, L., Deisseroth, K., Horowitz, M., & Levoy, M. (2014). Enhancing the performance of the light field microscope using wavefront coding. Optics express, 22(20), 24817-24839. [ PDF | link ]
  22. Broxton, M., Grosenick, L., Yang, S., Cohen, N., Andalman, A., Deisseroth, K., & Levoy, M. (2013). Wave optics theory and 3-D deconvolution for the light field microscope. Optics express, 21(21), 25418-25439. [ PDF | link ]
  23. Lee, S. A., Leitao, R., Zheng, G., Yang, S., Rodriguez, A., & Yang, C. (2011). Color capable sub-pixel resolving optofluidic microscope and its application to blood cell imaging for malaria diagnosis. PloS one, 6(10), e26127. [ PDF | link ]
  24. Zheng, G.*, Lee, S. A.*, Yang, S.*, & Yang, C. (2010). Sub-pixel resolving optofluidic microscope for on-chip cell imaging. Lab on a Chip, 10(22), 3125-3129. *co-first authors [ PDF | link ]

Ph.D. Thesis: Coded Computational Illumination and Detection for Three-dimensional Fluorescence Microscopy [ PDF | summary ]

Unpublished graduate work includes depth-assisted perspective correction for portrait photography, holographic illumination for all-optical neurophysiology, the application of light field microscopy to 3D calcium imaging, and a robust real time zebrafish high speed tail tracking approach (computer vision and machine learning in OpenCV/Matlab) for zebrafish virtual reality.